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ABSTRACT

This paper, in three parts, is a review of recent results on inference

on parameters in a linear model. In the first part, the Gauss-Markoff

theory is extended to the case when the dispersion matrix of the observable

random vector is singular. In the second, robustness of inference pro-

cedures for departures in the design matrix, the dispersion matrix and

distributional assumptions about the error components is considered.

Finally, the third part introduces concepts of linear sufficiency and complete-

ness in linear models, without making any distributional assumptions.
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1. Introduction 
Ai

We consider the general Gauss-Markoff model

-,ii XB * £ (1.1)

- 2
where E() 0 0, D(e) a V, and the matrices X and V may be singular, and

2discuss problems of inference on the unknown parameters B and a . We refer

2
to the model (1.1) by the triplet (Y,XS,a V). The paper is in three parts.

In the first part, the Gauss-Markoff theory is extended to the case when V

is singular. In the second, robustness of inference procedures for depar-

tures in the design matrix X, the dispersion matrix V and distributional

assumptions on Y is considered. The third part introduces the concepts

of linear sufficiency and completeness in linear models, without making any

distributional assumptions.

The following notations are used throughout the paper.

(i) 0(A) denotes the rank of a matrix A and R(A), the range of A, i.e.,

the vector space generated by the columns of A.

(ii) A denotes a generalized inverse of A, satisfying the only condition

AA - A (see Rao, 1973, p. 34).AIRFIREOFT-r I F 1T. . .

Th 13 .12.
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(iii) Z denotes a matrix of full rank satisfying the condition Z'X = 0,

where X is the design matrix.

(iv) The projection operators on R(A) are denoted by (see Rao 1973, p. 48)

PM W A(A'A)-A'M where M is p.d. (positive definite)

P A A(A'A) A'.

(v) E denotes the expectation operator and D the dispersion operator

(providing the variance-covariance matrix of a vector variable).

(vi) For any matrix L, ker L' consists of all vectors a with L'a = 0.

(vii) Y: nxl; X: nxm with p(X) = r<m, 8; mxl.

2. Unified Approach to Linear Estimation

In this section, we consider some methods of estimating the unknown

2parameters 8 and a in the general model (1.1).

2.1 Inverse partitioned matrix approach.

Let

[V X (Cl C2

for any g-inverse. Then the following proposition is proved in Rao (1971).

Proposition 2.1

(i) In the class of linear estimators L'Y such that X'L -p, the

minimum variance linear unbiased estimator (MVLUE) of p'B is p'B

where

or C'Y.

3 o 2

(ii) If p'S and q'i are MVLUE's of p'S and q'8 respectively, then

Var (p'8) - a2p C4p
COY ,q o2p'Cq o2 q'C 4 P.
C(p'S q'8) aP
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2(iii) An unbiased estimator of a is

a2 f-Y'C Y , fmP(V:X)-P(X
4,

2.2 Unified theory of least squares

*When V is nonsingular and Y has multivariate normal distribution, we

have the following well known results.

(1) Let 8 be such that

min CYIB) (YXB) (Y-X)) -Vy(Y-XB).
,* B

Then the MVLUE of p'8, pe R(X'), is p's.

2 -1 x 22(2) R0  (Y-Xs)'V (Y-XS) - a ()

i.e., distributed as X on f.d.f., where f p(V:X) - p(X).

(3) Let K'8 - w be a linear hypothesis where R(K)c R(X') and p(K)-h,

and

2 min (Y-XB)'v-(Y-xo).

K' S-w

Then

R 2  R2  221 0 ~ X(h)

If V is singular, the above statements are not applicable and the

following question arises. Does there exist a symmetric matrix M which

takes the place of V-1 for which the above properties (l)-(3) hold? The

* answer is contained in Proposition 2.2 proved in Rao (1973).

Proposition 2.2 Let M a (V+XUX')- for any symmetrc g-inverse and U be any

symmetric matrix such that p(V;X) m p(.V+X=X!).

(i) If B is such that

min (Y-XB)'M(Y-Xg) - (Y-XB)'M(Y-XB)

then the MVLUE of p'B, pe R(X'), is p'B.

(ii) R 0 Y-XS)'M(Y-X8) M- 2x2(f) f - o(V:X) - Ox).
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(iii) There is no choice of M for which the property (3) also holds

for all testable hypotheses.

*. Contrary to what is stated in (iii), claims have been made about the existence

of M for which the property (3) also holds. This is shown to be not true in

Rao (1978).

2.3 Least squares theory with derived restrictions

If V is nxn and singular, then there exists a matrix N of rank s-n-p(V)

such that N'V - 0 which implies that

N'Y -N'XS - 0 w.p.l. (2.3.1)

This stochastic relationship may be considered as a restriction on the para-

meter 8, which is known when Y is observed. In such a case, the following

proposition is proved by Goldman and Zelen (1964) and Mitra and Rao (1968).

Proposition 2.3 Let V- be any g-inverse of V and 8 be such that

min (Y-Xb) 'V (Y-X) = (Y-X)V (Y-X) R 0*
N'Y"N'X$ 0

Then

(i) p'8 is the MVLUE of p'8, pe R(X').
,%,--2 o2×2(

(ii) Ro  a X (f), f - P(V:X) - P(x)

(iii) If

2S- min (Y-XB)V (Y-XB)1 N'Y-N'XB

': K 'S M W
2 2 2 2

then RI - R a X (h), where h is the degrees of freedom of the
1 0

hypothesis K'8 - w to be tested. (Note that h is the rank of the

variance covariance matrix of K'8 and not necessarily,,the rank of K.)
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2.4 Optimal estimators in a wider class

In Sections 2.1 and 2.2, we considered the class of linear functions

of y as estimators ot p'8, pg R(X'). Now we consider a wider class of

functions

T(Y) f(N'Y) + y'g(N'Y), (2.4.1)

where N is as defined in (2.3.1), f is a scalar and g is a vector function,

as possible estimators of p'B. The following proposition is proved in Rao

(1979).

Proposition 2.4

(i) p'6 has an unbiased estimator in the cl~ss (2.4.1) iff pE R(X').

(ii) If p'8 is unbiasedly estimable, then the MVLUE of p'8 in the

class of (2.4.1) is equivalent w.p. 1 to the MVLUE of p'8 in the

class of linear functions L'Y, as considered in Sections 2.1 and 2.2.

(iii) If L;Y is the MVLUE of p'8 in the class L'Y, then a general

representation of the MVLUE in the wider class (2.4.1) is

L.Y + f(N'Y) + Y'g(N'Y)

where the functions f and g are such that they can be expressed in

terms of a function h as

f(E) -- Fh~

g( ) - N h(&)

for all & e R(N'X) and arbitrary outside R(N'X). Similar approach was

given in a paper published later by Harville (1981).

I
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2.5 Generalized projection operator

* Consider the general linear model (Y, XB, a2 V), where V may be singular.

* It is easily seen that

YE R(V:X) w.p.l.

The following proposition is established in Rao (1974).

Proposition 2.5 Let Z be a matrix of full rank such that Z'X = 0. Then:

"':" (i) R(X) and R(VZ) are disjoint, and R(X:VZ) - R(X:V).

"* (ii) The projection of y e R(X:VZ) on R(X) along R(VZ) can be expressed

as Py where P is any matrix satisfying the conditions

PX X, PVZ 0.

[Such a matrix P is called a generalized projection operator which

reduces to the usual projection operator when p(X:VZ) n, where n

is the order of V. Note that P is not unique when p(X:VZ) < n].

From the above proposition we deduce:

Proposition 2.6 Let P be the projection operator on R(X) along R(VZ) as

defined in Proposition 2.5, and CY be an unbiased estimator of XO (i.e.,

CX-X). Then

D(CY) - D(PY5

is non-negative definite, where D denotes the dispersion (variance-covariance)

operator, so that PY is the minimum dispersion unbiased estimator of X8 in

the class of linear unbiased estimators.

'.. . . . . . .* **.. . . . . . .
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Note that

D(CY) - D(CY-PY+PY)

- D(CY-PY) + D(PY) + a2(C-P)VP ' + a2PV(C-P) '. (2.5.1)

Since PVZ - 0 PV -AX' for some A, we have

(C-P)VP' - (C-P)XA 0 0

using the conditions CX - X and PX - X. Thus from (2.5.1)

D(CY) - D(PY) + D(CY-PY)

which proves the Proposition 2.6.

Proposition 2.6 answers a question raised by Kempthorne (1976) on the

construction of a projection operator when V is singular, and provides a

general method for coordinate free estimation through the concept of a pro-

jection operator.

From the Proposition 2.6, we have

Proposition 2.7 Let P be the projection operator on R(X) along R(VZ) and

(X'X) be any s-inverse of X'X. Then

(i) p' is the MVLUE of p'8, pe R(X'), where

. - (X'X)'X'PY

(ii) An unbiased estimator of a2 is

f' '(I-')V-(I-P)Y, f - P(V:X) - P(x)

Reference may also be made to Example 4, Rao (1973, p. 309), where an

approach to linear estimation is given without appealing to concepts of

linearity, unbfasedness and minimum variance. This is similar to the methods

disc -4 ii .ction 4 of this paper.

P l l l m - - -
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3. Robustness in the Linear Mbdel

.. In this Section we will discuss robustness of some Atatistical proce-

dures in linear models. To be specific, we will be concerned with the

'- robustness of best linear unbiased estimators (BLUEs) in the context of

estimation, and likelihood ratio tests in the context of tests of hypotheses

when there is specification error in the design matrix and/or in the disper-

sion matrix. The consequences of deviations from the assumption of normality

on tests will also be discussed.

2
We assume the same set up as in Section 1. Let (Y,X$,a I) be the

2assumed model while (Y,XB,o V) be the correct model, resulting in specifi-

cation error in the dispersion matrix. Throughout this-isecaion we assume that

V is p.d. Then the BLUE of an estimable linear parametric function A$ is

the same under both the models if and only if

A(X'X)-X'VZ- 0 for all Z, Z'X- O. (3.1)

This follows from the condition that a BLUE must have zero covariance with

every error function. Characterization of matrices V satisfying (3.1) is

well known [Rao and Mitra (1971); Rao (1967); Zyskind (1967)]. GenerallY,

(3.1) is equivalent to the following representation of V:

V- I + XlX' + ZA Z' + XAZ' +ZAx' (3.2)

where A1 A2 and A are arbitrary except that A.AZ' = 0 and V is p.d. An
2 4 4

equivalent representation of V is the following:

V- I + XA X' ZA2ZI + XoA3 Z ' +ZA (3.3)

where X . X(I- A-A), A1, A2 and A3 are arbitrary except that V is p.d.

02

Some further necessary and sufficient conditions (i.e., equivalent conditions)

for the representati n (3.3) to hold are given in the following.

I.0
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Proposition 3.1. The representation (3.3) is equivalent to any one of the

following conditions:

(a) Z'VZ1 -0

(b) PxV-(I- PX is symmetric

(c) (I -PXV_ (I- PxvI ) is symmetric

(d) There exists an orthogonal matrix T such that T' (I-Px)T,

T'(I-P )T, T'V-I(I-PxvI)T and T'(I-P _I)T are diagonal

matrices.

In the above A: kxm with p(A)-k, Zl: nxk is such that ZYZl 1 k and ZZ- 0

(kxn-g). For a proof of the above proposition, see Mathew and Bhimasankaram (1982).

,'glq.dentally, jif we demand (3.1) tA-hald for all A such that R(A') c R(X'),

which means that for every estimable linear parametric function the BLUE

is the same under both the models, then we get the following.

Proposition 3.2. (2.1) holds for all A such that R(A') c R(X') under any

one of the following equivalent conditions:

(a) X'VZ - 0

(b) VX- XQ for some Q

c) VPx is symmetric

(d) PX,Vl is symmetric.

The result (a) which implies (b) was proved by Rao (1967), and (c) is due to

Zyskind (1967). The result (d) appears in Mathew and Bhimansankaram (1982).

Consider next the problem of testing HO: AB= 0 assuming normality of
'S0

the errors. It is well known that the F-test based on X(X,I) - Y'(I-Px)I/

Y' (I-PX0)Y is both LRT and UMPI (under a suitable group of transformations)

a,

..

% I 
- " o - ° ° o " o °

" ° .
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2
under the normal model N(Y,XB,a I) (see, for example, Lehmann (1959)). We

would like to study the robustness properties of this test in so far as

whether the properties of its being LRT (criterion robustness) and UMPI

(inference robustness) remain valid under deviations from the assumption

of normality and the presence of specification errors in the design matrix

and/or the disperison matrix.

To begin with, note that if the correct model is N(Y,X18,0
2V), denoting

by X 0the matrix X (I-A A), the LRT testing H0:A - 0 is based on
1 0

X(X1IV) " Y'V (I-P 0 V)Y/YI 'V (I-P ) Y "  (3.4)Xlv xlv

Therefore, the F-test based on X(X,I) under N(Y,XS,a 2I) is LRT under

N(Y,X1,02V) if and only if

X(X,I) E X(X,V) for all Y (3.5)

Under the same design matrix X - X but a different dispersion matrix, the

condition on the representation of V is the following:

V- I + XAx' + (s-l)ZZ' + XoA3Z' + ZAX (3.6)
1 03 30(3

where A1, A3 are arbitrary and s is an arbitrary positive real number subject

to (i) V is p.d. and (ii) Z XAIZ 1 - (s-l)I The following proposition

~ 1 1 'k Tefloig rpsto

provides other equivalent conditions.

Proposition 3.3. V has the representation (3.6) if and only if any one of

the following equivalent conditions holds:

(a) (I-PX0)V(I-P0) - a(l-PX0) for some a > 0

(b) V- 1 (I-PX0V1 ) - a(I-Px0) for some a > 0

(c) ( -PX) (V-aI)(I-Px: PXL') - 0, for some a > 0, with A- LX.
LP
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Part (c) of this proposition is due to Khatri (1980) aniparts (a), (b) are

due to Mathew andBhimasankaram (1982). The representation (3.6) is due to

Rao (1967). When V has the intraclass covariance structure, V - (l-Q)I+Oll',

proceeding directly Ghosh and Sinha (1980) noted that X(X,I) E X(X,V) if and

only if 1 e R(X0 ). Some generalizations of (3.2) and (3.6) are reported in Chikuse

(1981). -
Under the same dispersion matrix I but a different design matrix XI,

the F-test remains LRT if and only if X(XI) = X(XII). This leads to

the following.

Proposition 3.4. X(X,I) S X(XII) for all Y if and only if

0
R(X) = R(X1) and RCX 0 ) - R(X1) (3.7)

Finally, the following proposition provides conditions under which

(3.5) holds for arbitrary V and XI.

Proposition 3.5. (3.5) holds if and only if (3.6) and (3.7) hold.

Propositions (3.4) and k3.5) are due to Mathew and Bhimasankaram (1982).

The key to all these results, noted earlier by Sinha and Mukhopadhyay (1980),

can be stated in the following most general form with a different simpler

proof due to MUller and Sinha.

Lemma 3.6: Let A,B,C,D symmetricbe such that

y'By - for almost all y.
y'By y Dy

If there is an x such that Ax- 0 and x'BxO 0 then

C - yA for some 4E 1R.

Also

D - yB

provided A# 0.
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Proof: From the assumption it follows immediately that

y'Ay y'Dy -y'Cy y'By for all y.

Especially for y -x this results in x'Cx-O0. Now insert (y+ Ax) to obtain

2
y'Ay~y'Dy +2X y'Dx +X x Dx]

-(y'Cy +2X y'Cx] (y'By +2X y'Bx+ X 2x'Bx].

Comparison of the coefficients of I3 yields

0 M y'Cx (x'Bx) for all y,

whence Cx- 0. Therefore the coefficients of X2become

y'Ay xiDx - y'Cy ieBx

from which

C -I~ A

follows. The remainder is evident.

We nov turn our attention to the robustness properties of the F-test

for non-normal errors. The following result was proved by Gbosh and Sinha

(1980).

Proposition 3.7. Let Y -XS+ c with cdistributed according to a density

f(E) given by

T- C
2.

f c) e n/2 dL(tr).

*Then for testing H 0 AS- 0, the F-test based on )X(X,I) is both LRT and UMPI.
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Recently Sinha and Drygas (1982) generalized this result to the following.

Proposition 3.8. Let Y - XS+ at with c distributed according to a density

q(e'c), q , convex. Then the F-test based on X(XI) is both LRT and UMPI.

This result is similar to a robustness property of the Hotelling's

T-test proved by Kariya (1981) and is based on an application of a represen-

tation theorem due to Wijsman (1967). Under a slightly more general dis-

tribution of the errors, the following property of a BLUE holds (see Sinha and

Drygas (1982)).

Proposition 3.9. Let Y = XO+ a with c having a spherically symmetric dis-

tribution. Then for any cc 'and any n.n.d. matrix C of appropriate order

P{(Gy-AO)'C(Gy-AB) c2 ) > P((Ly-AB)'C(Ly-AB) <c2 )

where Gy is any BLUE of estimable AS and Ly is any unbiased estimator of

AB.

4. Sufficiency and Completeness in the Linear Model

The well-tried principle of sufficiency has features some of which

give rise to a similar concept in the linear model when no distributional

assumptions are made. Suppose, for instance, s is a sufficient statistic

for some parameter e and t is independent of a. In this case the expected

value of any integrable function h(t) can be written as

E h(t) - E(h(t)Is) - 0(s) a.s.

which is a function independent of e. Note that $(s) must be constant, i.e.,

t is ancillary, if all underlying distributions share the same null sets

(cf. Basu (1958)). It might have been the above equation that led Barnard

* (1963) to his notion of linear sufficiency. Adjusted to our model

,YX,2 V) it is as follows.
d'
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Definition 4.1: A linear statistic Ly is called linearly sufficient if

for all linear functions c'y uncorrelated with Ly there is a b such that

E 8 (c'y) - b'Ly a.@.

If V is regular this simply means that the expected value of c'y does

not depend on 0. Another approach to the idea of linear sufficiency arises

from the fact that uniformly minimum variance unbiased estimators are functions

*of each sufficient statistic. According to this is a definition of Baksalary and

Lala (1981), although they originally used a different terminology.

Definition 4.2: A linear statistic Ly is called linearly sufficient if for

each linear estimable function p'B the BLUE is a linear function b'Ly of Ly.

On the other hand one may consider that the best prediction of y given any

statistic s is the conditional expectation E (yjs), which ii independent of

e if s is sufficient. Reduced to linear term this property results in a

definition that is due to Drygas (1983).

Definition 4.3: A linear statistic Ly is called linearly sufficient if the

best linear predictor of y given Ly (wriLLen BLP(yjLy) is independent of

If the distribution of y has a density p8 then, under certain regularity

conditions, Fisher's information matrix I is well defined. In this case

a statistic s is sufficient if and only if its information matrix I equals
5

the original 1. In the linear model the assumptions above are met vhen y

is normally distributed and R(X) is contained in R(V). Then the information

matrix for the parameter B reads

-L "X' V- X.

This may be regarded as an information measure as well without the normal

supposition. One can define therefore:

Definition 4.4: If R(X) c R(V) a linear statistic Ly is called linearly suffi-

cient if L -.

..* *



V Each of these definitions can be transformed into algebraic terms, which

all turn out to be equivalent. We present two of the handier ones.

Proposition 4.5. Ly is linearly sufficient if and only if R(X)c R(WL') or

ker L n R(W) c V(ker X'). (See Baksalary and Kala (1981), MUller (1982)).

If y is normal with known variance and, in addition, R(X) is a subspace

of R(V) then it follows immediately from Definition 3.4 that sufficiency and

linear sufficiency are equivalent notions. This attractive property can like-

wise be confirmed without the regularity condition as was shown by Drygas (1983)

and MUller (1982).

Proposition 4.6. If y is normal with known variance then Ly is linearly suf-

ficient if and only if it is sufficient.

But the concept of linear sufficiency also makes some sense without the

normal supposition as it becomes evident from Definition 4.2 and from the

following formulation which might be called a linear version of the Rao-

Blackwell theorem (see Rao,(1973)): Let Ly be linearly sufficient and a'$

be any parametric function estimated by c'y, say. Then BLP(c'ylLy) has the

same bias as c'y but smaller mean squared error. That means not only BLUEs

but all admissible linear estimators are linear functions of Ly. (As for

admissibility see Rao (1976).)

Sufficient statisics are especially useful when they are complete.

The linear analogue of this concept arises quite naturally.

Definition 4.7: A linear statistic Ly is called linearly complete if each

linear function a'Ly that has expected value 0 for all 0 1 3m vanishes a.s.

Again the definition can easily be translated into an algebraic ex-

F. pression. Combined with this the above conditions for linear sufficiency

turn from inclusions into equations. For normal variables Drygas (1983)

shoved the accordance with ordinary completeness.

Proposition 4.8. Ly is linearly complete if and only if R(LV) c R(LX).
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If y is normally distributed this is equivalent to completeness. Ly is

linearly sufficient and linearly complete, i.e. sufficient and complete in

the normal case with known variance, if and only if R(X) - R(WL') or

karL nR(W) - V(kerX').

Generally a linearly sufficient Ly does not provide all the information

about 2 contained in the sample. This deficiency can be compensated when,

in addition to Ly, one or more quadratic forms are considered. One would

like to extend now the idea of linear sufficiency to this situation, but

among the four definitions above only Definition 4.2 can serve this purpose

satisfactorily.

Definition 4.9: (Ly, Y'Ty) is called quadratically sufficient if Ly is

linearly sufficient and the residual sum of squares can be expressed as

y'L'ALy + a y'Ty for some symmetric A and real a.

Note that the residual sum of squares is a mintaxim variance unbiased estimator

of a2 x (degrees of freedom) if y is normal. Things become rather more compli-

cated when one allows for more than one quadratic form while V is singular.

With the above definition, however, the following can be proved (cf. Seely

(1978), MUller (1982)).

Proposition 4.10. (a) (Ly, y'Ty) is quadratically sufficient if and only if

for some a c I,ker L n R(W) c V(ker X') n ker X'T n ker (1-aT).

(b) If y is normal a quadratically sufficient (Ly,y'Ty) is sufficient. It

is complete if Ly is complete.

(c) If y is normal a sufficient (Ly,y'Ty) is quadratically sufficient pro-

vided one of the following two conditions holds.

(i) y'Ty > 0 as. (i.e. WTW is positive semidefinite).

(ii) y'Ty is invariant a.s. (i.e. WTX a 0) and Ly is complete

(i.e. R(LV) c R(LX)).

e o
q

" "'." -. ".
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